Hydrozirconation of Allenyl Sulfide for Generating 7-Thio-substituted Allylzirconium Species and Its Reaction with Carbonyl Compounds

Masao Chino, Guang Hao Liang, Takashi Matsumoto, and Keisuke Suzuki* Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223

(Received December 13, 1995)

Hydrozirconation of allenyl sulfide generates a γ -thioallylzirconocene species, which reacts with aldehydes and ketones to give anti olefinic β -sulfenyl alcohols in highly regioand stereoselective manner.

 γ -Thio-substituted allylmetals $\bf A$ are among the versatile classes of organosulfur reagents in organic synthesis. ^{1,2} Based on our previous finding on the accessibility to various allylzirconocene species via the hydrozirconation of allenes, ³ we envisioned to generate the Zr-version of $\bf A$ [M = Cp₂Zr(Cl)-] by applying the above protocol to thio allene $\bf B$.

Figure 1.

In this communication, we wish to report the viability of such an approach to γ -thioallylzirconocene chloride 2 and the reaction with carbonyl compounds to give olefinic β -sulfenyl alcohols 3 in high stereoselectivity (Eq. 1).

PhS
$$Cp_2Zr(H)Cl$$
 PhS $Zr(Cl)Cp_2$ PhS

Allenyl sulfide 1⁴ underwent clean hydrozirconation by a similar procedure we previously reported,³ and the resulting thioallylzirconium 2 smoothly reacted with aldehydes at -78 °C. The addition proceeded with high stereoselectivity to give the anti-adducts in high yield, as had been the case for various other allylzirconiums (Table 1).3,5,6 The addition to α,β unsaturated aldehyde proceeded in a 1,2-mode to give 3d, and none of the 1,4-adduct was observed (run 4). The olefinic β sulfenyl alcohols, thus obtained in high stereoselectivity, were easily converted to vinyl epoxides, which served to confirm the stereostructure of the major adducts.⁶ Furthermore, at the temperature of 0 °C, the thioallylzirconium 2 proved to react with ketones to give high yields of the adducts 3e-3g.5,7 In case the sterics of the two substituents attached to the ketone carbonyl were sufficiently different, good to high anti selectivity was observed as seen in runs 6 and 7.7

Typical procedure is described for the synthesis of β -sulfenyl alcohol **3b**: Under a nitrogen atmosphere at -78 °C, to a stirred suspension of Cp₂Zr(H)Cl⁸ (322 mg, 1.25 mmol) in

Table 1. Reaction of 2 with aldehydes and ketones^a

Table 1. Reaction of 2 with alderrydes and retories		
run	aldehyde or	productb
	methyl ketone	(yield/%, anti/syn)
1	<i>n</i> -C ₅ H ₁₁ CHO	n-C ₅ H ₁₁ SPh 3a (75, 93/7)
2	СНО	OH SPh 3b (81, >97/3)
3	СНО	OH i SPh 3c (80, 95/5)
4	<i>n</i> -C ₃ H ₇ ← CHO	n-C ₃ H ₇ SPh 3d (80, 86/14)
5	<i>n</i> -C ₁₃ H ₂₇ COCH ₃	n-C ₁₃ H ₂₇ SPh 3e (81, 82/18)
6	COCH₃	HO CH ₃ SPh 3f (80, 96/4)
7	COCH ₃	HQ CH ₃ is SPh 3g (94, 88/12)

^aReaction conditions: -78 °C, 30 min for runs 1-4; 0 °C, 1 h for runs 5-7. ^bEach of the major stereoisomers is depicted.

CH₂Cl₂ (1.0 ml) [for a special precaution to prepare the suspension, see Ref. 3b] was added allenyl sulfide 1⁴ (330 mg,

2.23 mmol) in CH_2Cl_2 (2.5 ml). The reaction was gradually warmed up to room temperature, where a red solution resulted. The reaction was rechilled to -78 °C, to which a solution of cyclohexanecarbaldehyde (98.7 mg, 0.881 mmol) in CH_2Cl_2 (2.5 ml) was added. After 30 min, the reaction was stopped by adding sat. aqueous NaHCO₃. Extractive workup followed by purification (SiO₂ preparative TLC, hexane/Et₂O = 9/1) gave alcohol **3b** (186 mg, 81%).^{5,6}

Financial support by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, and Culture, Japan (#0523415) is gratefully acknowledged.

References and Notes

- K. Ogura, in "Comprehensive Organic Synthesis," ed by B. M. Trost and I. Fleming, Pergamon, Oxford (1991), Vol. 1, Chap. 2.3.
- a) D. Seebach, K.-H. Geiss, and M. Pohmakotr, Angew. Chem., Int. Ed. Engl., 15, 437 (1976); b) D. D. Ridley and M. A. Smal, Aust. J. Chem., 33, 1345 (1980); c) Y. Ikeda, K. Furuta, N. Meguriya, N. Ikeda, and H. Yamamoto, J. Am. Chem. Soc., 104, 7663 (1982); d) K. Furata, Y. Ikeda, N. Meguriya, N. Ikeda, and H. Yamamoto, Bull. Chem. Soc. Jpn., 57, 2781 (1984); e) Y. Yamamoto, H. Yatagai, Y. Saito, and K. Maruyama, J. Org. Chem., 49, 1096 (1984); f) Y. Yamamoto, Y. Saito, and K. Maruyama, J. Organomet. Chem., 292, 311 (1985).
- a) H. Maeta, T. Hasegawa, and K. Suzuki, Synlett, 1993, 341;
 b) M. Chino, T. Matsumoto, and K. Suzuki, Synlett, 1994, 359;
 c) K. Suzuki, T. Hasegawa, T. Imai, H. Maeta, and S. Ohba, Tetrahedron, 51, 4483 (1995).
- 4 L. Brandsma and H. D. Verkruijsse, "Synthesis of Acetylenes, Allenes and Cumulenes," Elsevier, Amsterdam (1981), p 110.

- 5 All new compounds were fully characterized by ¹H, ¹³C NMR, IR, and high-resolution MS.
- 6 The stereoselectivities were determined by the peak integration of ¹H NMR (400 MHz). The stereochemistry was assigned by converting the major adducts **3a-c** to the corresponding vinyl epoxides **4a-c** as shown below.

7 The stereoselectivities were determined by the peak integration of ¹H NMR (400 MHz). The stereochemistry was assigned by the NOE experiments for vinyl epoxide **4e**, obtained from **3e** in a similar manner as in Eq. 2, and for tetrahydrofurans **4f** and **4g**, which were obtained from **3f** and **3g** (Eq. 3), respectively.

(1) 9-BBN; (2) H₂O₂, NaOH; (3) Tf₂O, 2,6-di*tert*-butyl-4-methylpyridine.

S. L. Buchwald, S. J. LaMaire, R. B. Nielsen, B. T. Watson, and S. M. King, *Org. Synth.*, 71, 77 (1992).